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Abstract: The cosmological observations provide a strong evidence that there is a posi-

tive cosmological constant in our universe and thus the spacetime is asymptotical de Sitter

space. The conjecture of gravity as the weakest force in the asymptotical dS space leads

to a lower bound on the U(1) gauge coupling g, or equivalently, the positive cosmological

constant gets an upper bound ρV ≤ g2M4
p in order that the U(1) gauge theory can survive

in four dimensions. This result has a simple explanation in string theory, i.e. the string

scale
√

α′ should not be greater than the size of the cosmic horizon. Our proposal in string

theory can be generalized to U(N) gauge theory and gives a guideline to the microscopic ex-

planation of the de Sitter entropy. The similar results are also obtained in the asymptotical

anti-de Sitter space.
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Particle physicists have told us the low energy physics is perfectly described by the

standard model. Recent cosmological observations provide a strong evidence that there is

a positive cosmological constant in our universe. As the only well formulated candidate for

quantum gravity, string theory shall be connected with the phenomena in our universe. A

central topic along the line in string theory is to answer why the theory for the low energy

phenomena is the standard model, why there is a cosmological constant, and why it is the

value we observed.

String theory is only consistent in ten dimensions in order to cancel the conformal

anomaly on the string world sheet. To understand four dimensional physics in our real

world, we must compactify string theory on some manifolds. Recent developments for the

flux compactifications [1], however, suggest that a huge number of at least semi-classically

consistent string vacua emerge in string theory, named string landscape [2]. It may or

may not provide an opportunity for us to explore the specific low energy phenomena in

the experiments from the viewpoint of string theory. Given the numerous “vacua” in the

string landscape, the most urgent problem is to find a reliable vacuum selecting principle.

In [3], Vafa proposed that self-consistence of a quantum theory of gravity offers a way

to pick out which effective field theories can arise. Many vacua in the string landscape,

although consistent semi-classically, are actually inconsistent on the quantum level, called

swampland in [3]. Self-consistent landscape is surrounded by the swampland. Then the

problem is translated into finding the criteria to pick out really self-consistent landscape

from the swampland. More criteria for self-consistent effective field theory have been

proposed in [5, 4]. Eventually we expect that more and more consistent conditions will

be found and the range for otherwise free parameters will be narrowed down and the

predictions of string theory can be checked in the experiments.

The authors in [5, 4] proposed some criteria for the self-consistent effective field theory

in four-dimensional asymptotical flat spacetime. However, there are a huge number of

string vacua with positive or negative cosmological constants in string landscape. What is

more, our universe is asymptotical de sitter space which is favored by recent cosmological

observations. So we are motivated to explore the criterion for self-consistent effective field

theory in asymptotical de Sitter and Anti-de Sitter background. On the other hand, the

well-defined string theory and quantum field theory in asymptotical dS space are still

unknown. But we try to explore them heuristically in this note.

In [4], gravity is conjectured as the weakest force. It is the claim that for a U(1) theory

there exists a charged particle whose mass is smaller than its charge in some appropriate

unit. The conjecture is supported by string theory and some evidence involving black

holes and symmetries. The conjecture leads to an intrinsic bound on the UV cutoff Λ for

a consistent U(1) gauge field theory in asymptotical flat four dimensional spacetime which

takes the form

Λ ≤ gMp ∼ g/
√

G, (1)

where g is the U(1) gauge coupling. An intrinsic radius of curvature appears in the asymp-

totical de Sitter and Anti-de Sitter background. An infrared cut-off of the effective field

theory should be greater than, if not equal to, the radius of the background. Moreover,

– 1 –



J
H
E
P
1
0
(
2
0
0
6
)
0
5
9

the UV cut-off of the effective field theory should be smaller than the curvature radius,

otherwise the full quantum gravity or string theory must be invoked to describe the situ-

ation. We shall show that the latter condition combined with the conjecture of gravity as

the weakest force yields a lower bound on the U(1) gauge theory; or equivalently, an upper

bound on the cosmological constant. We also propose a heuristic explanation in string

theory for this bound of the coupling constant.

Let us start with the metric of Schwarzschild-de Sitter solution in four dimensional

spacetime

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dΩ2
2, (2)

with

f(r) = 1 − 2Gm

r
− r2

L2
, (3)

where G is the Newton constant and L =
√

3/(8πGρV ) is the size of the pure de Sitter

space with a positive cosmological constant ρV . For a U(1) gauge theory, the mass scale of

the minimally charged monopole is Λ/g2 and its size is of order 1/Λ, where Λ is the cutoff

of the field theory. The size of the black hole horizon r− and cosmic horizon r+ satisfies

r3
± − L2r± + 2G

Λ

g2
L2 = 0. (4)

Requiring that this monopole is not black and smaller than the cosmic horizon, namely

r− ≤ 1
Λ
≤ r+, yields

1

Λ3
− L2

Λ
+ 2G

Λ

g2
L2 ≤ 0 (5)

or,

Λ4 − g2

2G
Λ2 +

g2

2GL2
≤ 0. (6)

Demanding that there is a solution for the inequality (6) yields

g ≥
√

8G

L
, (7)

or equivalently,

ρV ≤ g2/G2 ∼ g2M4
p . (8)

If there is a very weak U(1) gauge theory with gauge coupling g ∼ 10−60, the cosmological

constant is roughly the same as that we observed. Solving the inequality (6), we find a

bound on the cutoff for U(1) gauge theory which takes the form

g

2
√

G

√

√

√

√1 −
√

1 − 8G

g2L2
≤ Λ ≤ g

2
√

G

√

√

√

√1 +

√

1 − 8G

g2L2
. (9)

For a fixed gauge coupling, in the limit with ρV → 0 or L → ∞, eq. (9) is just the same as

eq. (1). When gauge coupling goes to its lower bound, the UV cutoff for this U(1) gauge

field theory is Λ ∼ g/
√

G ∼ 1/L.
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Surprisingly, eq. (7) shows that a positive cosmological constant induces a lower bound

on the U(1) gauge coupling. Or equivalently, the positive cosmological constant can not

be arbitrarily large in order that a consistent U(1) gauge theory can survive. The most

important input at this point is the requirement that the size of the minimally charged

monopole is not larger than the cosmic horizon in the asymptotical de Sitter space. This

is also the condition for us to trust the above estimates about the mass scale and the size

of the monopole.

There is a simple physical explanation of eq. (7). 1/Λ is roughly the shortest physical

length for the U(1) gauge field theory. It is natural to demand 1/Λ be no larger than the

size of cosmic horizon, namely Λ > 1/L. Together with Λ ≤ gMp, this directly leads to

eq. (7) and (8).

Another heuristic consideration leading to eq. (7) is the following. In order that there

is no naked singularity in the space-time, the mass of the minimally charged monopole is

not greater than the mass parameter of the Nariai Black hole L/G, namely

Λ

g2
≤ L

G
, or Λ ≤ g2L

G
. (10)

On the other hand, the size of the monopole 1/Λ should not be larger than the size scale of

the cosmic horizon L; or equivalently, Λ ≥ 1/L. Substituting this relationship into eq. (10),

we obtain eq. (7) and (8) again.

In the more formal derivation using the metric (2), we did not introduce in f(r) the

contribution of the magnetic charge which is roughly Gg−2r−2, this term is smaller than

GMr−1 if the horizon size is larger than 1/Λ. Or it is larger than GMr−1 if the horizon

size is smaller than 1/Λ, in this case we obtain the condition Λ ≤ gMp. Thus, if we include

the term Gg−2r−2 in the above formal discussion, we will end up with inequalities similar

to (9).

In [4], the authors argued that the absence of global symmetries in quantum gravity

requires that the field theory description should break down in the limit g → 0, since the

symmetry can be identified as a global symmetry. The way to avoid this problem in [4] is

the UV cutoff also goes to zero when g → 0. In a asymptotical de Sitter space, an intrinsic

lower bound on the gauge coupling is induced by the size of the cosmic horizon (7), which

shows that the effective gauge field theory already breaks down before taking the limit

g → 0. The gauge coupling characterizes the strength of the local interaction. Eq. (7)

implies that the size of the system can affect the local interaction in quantum theory.

We pause to discuss the most important premise in our discussion, namely a minimally

charged monopole should not be a black hole. The following reasoning not only applies to

an asymptotic Minkowski space, it also applies to an asymptotic de Sitter space. Imagining

that a minimal charged monopole is indeed a black hole, thus it will Hawking radiate (the

horizon size is greater than the field theory UV cut-off which in turn is greater than the

Planck scale). During the radiation process, neutral particles as well as charged particles

can be radiated. If only neutral particles are radiated, the black hole’s mass becomes smaller

while its magnetic charges remains the same, this implies that there exists monopoles with

smaller mass. If charges are radiated, these charges must be smaller than that of the
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original monopole, this contradicts our assumption. Of course the above argument does

not apply to a general black hole with magnetic charge, since it may be formed of many

minimally charged monopoles and other matter, thus is neither minimally charged nor with

smaller mass. [4] derives the weak gravity inequality using the absence remnants, which is

valid also in an asymptotic de Sitter space.

We now switch to string theory. Consider the brane world scenario in Type IIB string

theory. The tension of the D3-brane T3 ∼ M4
s /gs is taken as the effective cosmological

constant on the brane and the U(1) gauge coupling is related to the string coupling gs by

g ∼ g
1/2
s . According to eq. (8), we obtain a constraint on the string scale and the string

coupling, namely

M2
s ≤ gsM

2
p . (11)

Note that the string theory in four dimensions is reduced from ten dimensions. For toroidal

compactification, if the average size of the extra dimension is R, the Planck scale in four

dimensions is

M2
p ∼ R6M8

s /g2
s = (RMs)

6M2
s /g2

s . (12)

Requirement (11) implies

gs ≤ (RMs)
6. (13)

In general we assume RMs > 1; otherwise, we switch to a T-dual description. For weakly

coupled string theory gs ≤ 1, this condition is always satisfied. The constraint on the string

coupling is quite loose.

In string theory, we can find a simple explanation about the lower bound on the gauge

coupling or string coupling in the asymptotical de Sitter space. Only when the length of

string
√

α′ is shorter than the size of the cosmic horizon, the stringy effects can be ignored

and the description of the effective field theory is reliable. This is just the condition that

the Hawking temperature is lower than the string Hagedorn temperature. Thus we require

√
α′ ≤ L, or ρV ≤ 1

Gα′
. (14)

In four dimensions Newton’s constant is related to the string coupling and string length

square α′ ∼ 1/M2
s by

G ∼ g2
sα

′ (15)

up to a coefficient which depends on the compactification. Substituting eq. (15) into

eq. (14), we obtain

ρV ≤ g2
sM4

p . (16)

In an asymptotical de Sitter space string coupling can not be arbitrarily weak. For a given

string coupling, an upper bound on the cosmological constant appears; Above the bound,

the effective gauge field theory on the brane breaks down.

Even though a well-defined string theory in asymptotical de Sitter is still unknown,

the above discussions provide a useful constraint on possible realizations of de Sitter space.

We now re-investigate the brane world scenario in Type II B string theory more carefully.

Assume the string theory in four dimensions be reduced from ten dimensions by toroidal
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compactification. Eq. (15) is modified to

G ∼ g2
sα

′(RMs)
−6 (17)

Thus eq. (16) takes the form

ρV ≤ g2
sM

4
p (RMs)

−6. (18)

Identifying ρV with T3 ∼ M4
s /gs and using eq. (17) we find gs ≤ (RMs)

6 which is exactly

the same as eq. (13). This result obtained in string theory exactly matches the result

obtained in the effective field theory.

We can go one step further in string theory. The field theoretical argument can not be

generalized to the Non-Abelian gauge field theory, while the string theory argument can.

Consider a stack of N D3-branes. The fields of the open string theory are in the adjoint

representation of SU(N). For a stack of D3-brane, the effective cosmological constant

becomes NT3 ∼ NM4
s /gs. In this case we simply obtain the constraint on the string

coupling as

gsN ≤ (RMs)
6. (19)

The combination of the string coupling and N is nothing but t’ Hooft coupling. This is to

be expected. For fixed string coupling and size of the extra dimensions, an upper bound

on the rank of the gauge group is obtained. Eq. (19) can be obtained from eq. (8) provided

g2 in eq. (8) is replaced by g2N .

The above discussions in strng theory can be generalized to diverse dimensions. For

simplicity, we investigate a stack of N D9-brane. The Hubble parameter H on the brane

takes the form

H ∼
√

G10T9N ∼ 1

ls

√

gsN, (20)

where the ten-dimensional Newton constant is given by G10 ∼ g2
s l8s and T9 ∼ 1/(gsl

10
s ).

Requiring
√

α′ ≤ H−1 yields

gsN ≤ 1. (21)

The ’t Hooft coupling must be not greater than 1 in order that the gauge field theory on

the brane is effective. The entropy of de Sitter space on the brane is

S ∼ 1

H8G10

∼ 1

(gsN)6
N2. (22)

For gsN ≤ 1, S ≥ N2. This is a reasonable result since the number of adjoint fields is no

less than N2. Recall the argument about de Sitter entropy in [6]. The authors considered

a system of N unstable D9-brane in Type II A string theory. The basic requirement for

eternal inflation is that the Hubble time H−1 should be larger than the time scale for the

open string tachyon to fall off the top of its potential ls, which yields gsN ≥ 1 by using

eq. (20). The gauge field theory on the brane breaks down for eternal inflation unless

gsN ∼ 1. For fixed t’ Hooft coupling gsN ∼ 1, we can take N → ∞ and gs → 0 without

any need for closed string quantum corrections. Now the de Sitter entropy is just the

square of the number of branes N2. This provides a tentative calculation for the de Sitter

entropy in string theory. We hope we can work out the details on this argument in the
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future. This is different with the case AdS/CFT where we require t’ Hooft coupling is

much greater than one in order that we can trust the geometry [7].

In an asymptotical Anti-de Sitter space-time, the similar results can be obtained. The

metric of Schwarzschild Anti-de Sitter solution in four dimensional spacetime takes the

form

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dΩ2
2, (23)

with

f(r) = 1 − 2Gm

r
+

r2

L2
, (24)

where L =
√

−3/(8πGρV ) is the size of the anti-de Sitter space with a negative cosmological

constant ρV . The radius of the black hole rbh satisfies

r3
bh + L2rbh − 2GmL2 = 0. (25)

Requiring that the minimally charged monopole should not be black yields

1

Λ3
+

L2

Λ
− 2G

Λ

g2
L2 ≥ 0, (26)

or equivalently,

Λ4 − g2

2G
Λ2 − g2

2GL2
≤ 0. (27)

Solving this inequality, we obtain the bound on the intrinsic UV cutoff for the U(1) gauge

field theory, namely

Λ ≤ g

2
√

G

(

1 +

√

1 +
8G

g2L2

)1/2

. (28)

On the other hand, we also require that the minimal physical length 1/Λ should be shorter

than the radius of anti-de Sitter background; otherwise, the gauge field theory breaks down.

Thus g ≥
√

G/L or |ρV | ≤ g2M4
p . With the viewpoint of string theory, the similar results

are also obtained.

In [8], the authors generalized the arguments in four dimensions in [4] to lower dimen-

sions. Our previous discussions can also be used to investigate the cases in lower dimensions

and the similar results are obtained.

To summarize, we have investigated the constraints on the effective gauge field theory

in an asymptotical de Sitter and an anti-de Sitter background. But string theory still

survives when the constraints are violated. A lower bound on the gauge coupling results

from the requirement that the shortest length for the effective gauge field theory should be

shorter than the radius of the background curvature. This result has a simple explanation

in string theory. The discusisons in string theory can be generalized to diverse dimensions

and the non-Abelian gauge field theory.

We also want to stress that we don’t provide any concrete example to show how certain

theories in certain de Sitter space cannot arise in string theory. We only say that there is

no local field theory description for length scales shorter than the de Sitter radius if the

latter itself is shorter than the string scale.
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